Approximating Eigenvectors by Subsampling
نویسنده
چکیده
We show that averaging eigenvectors of randomly sampled submatrices efficiently approximates the true eigenvectors of the original matrix under certain conditions on the incoherence of the spectral decomposition. This incoherence assumption is typically milder than those made in matrix completion and allows eigenvectors to be sparse. We discuss applications to spectral methods in dimensionality reduction and information retrieval.
منابع مشابه
A spatial-spectral approach for deriving high signal quality eigenvectors for remote sensing image transformations
Spectral decorrelation (transformations) methods have long been used in remote sensing. Transformation of the image data onto eigenvectors that comprise physically meaningful spectral properties (signal) can be used to reduce the dimensionality of hyperspectral images as the number of spectrally distinct signal sources composing a given hyperspectral scene is generally much less than the number...
متن کاملThesis Proposal: Approximate Game Theoretic Analysis of Large Simulation-Based Games
Multiagent simulation extends the reach of game-theoretic analysis to scenarios where payoff functions can be computed from implemented agent strategies. However this approach is limited by the exponential growth in game size relative to the number of agents. Player reductions allow us to construct games with a small number of players that approximate very large symmetric games. We introduce de...
متن کاملScaling simulation-based game analysis through deviation-preserving reduction
Multiagent simulation extends the reach of game-theoretic analysis to scenarios where payoff functions can be computed from implemented agent strategies. However this approach is limited by the exponential growth in game size relative to the number of agents. Player reductions allow us to construct games with a small number of players that approximate very large symmetric games. We introduce de...
متن کاملFixed b subsampling and the block bootstrap: improved confidence sets based on pvalue calibration
Subsampling and block-based bootstrap methods have been used in a wide range of inference problems for time series. To accommodate the dependence, these resampling methods involve a bandwidth parameter, such as the subsampling window width and block size in the block-based bootstrap. In empirical work, using different bandwidth parameters could lead to different inference results, but tradition...
متن کاملFixed-b Subsampling and Block Bootstrap: Improved Confidence Sets Based on P-value Calibration
Abstract Subsampling and block-based bootstrap methods have been used in a wide range of inference problems for time series. To accommodate the dependence, these resampling methods involve a bandwidth parameter, such as subsampling window width and block size in the block-based bootstrap. In empirical work, using different bandwidth parameters could lead to different inference results, but the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009